PhD in Mathematics


Program Description


Joining the Department as a postgraduate is certainly a good move. The Department maintains strong research in both pure and applied mathematics, as well as the traditional core of a Mathematics department. What makes our Department different is equally strong research in fluid mechanics, scientific computation, and statistics.

The quality of research at the postgraduate level is reflected in the scholarly achievements of faculty members, many of whom are recognized as leading authorities in their fields. Research programs often involve collaboration with scholars at an international level, especially in the European, North American, and Chinese universities. Renowned academics also take part in the Department's regular colloquia and seminars. The faculty comprises several groups: Pure Mathematics, Applied Mathematics, Probability, and Statistics.

Mathematics permeates almost every discipline of science and technology. We believe our comprehensive approach enables inspiring interaction among different faculty members and helps generate new mathematical tools to meet the scientific and technological challenges facing our fast-changing world.

The Ph.D. program provides a broad background in mathematics and mathematical sciences. Students choose their major concentration from three options: Pure Mathematics, Applied Mathematics; and Probability, and Statistics. The doctoral thesis must be an original contribution to the field.

Research Foci

Algebra and Number Theory

The theory of Lie groups, Lie algebras and their representations play an important role in many of the recent development in mathematics and in the interaction of mathematics with physics. Our research includes the representation theory of reductive groups, Kac-Moody algebras, quantum groups, and conformal field theory. Number theory has a long and distinguished history, and the concepts and problems relating to the theory have been instrumental in the foundation of a large part of mathematics. Number theory has flourished in recent years, as made evident by the proof of Fermat's Last Theorem. Our research specializes in automorphic forms.

Analysis and Differential Equations

The analysis of real and complex functions plays a fundamental role in mathematics. This is a classical yet still vibrant subject that has a wide range of applications. Differential equations are used to describe many scientific, engineering, and economic problems. The theoretical and numerical study of such equations is crucial in understanding and solving problems. Our research areas include complex analysis, exponential asymptotics, functional analysis, nonlinear equations, and dynamical systems, and integrable systems.

Geometry and Topology

Geometry and topology provide an essential language describing all kinds of structures in Nature. The subject has been vastly enriched by close interaction with other mathematical fields and with fields of science such as physics, astronomy, and mechanics. The result has led to great advances in the subject, as highlighted by the proof of the Poincaré conjecture. Active research areas in the Department include algebraic geometry, differential geometry, low-dimensional topology, equivariant topology, combinatorial topology, and geometrical structures in mathematical physics.

Numerical Analysis

The focus is on the development of advanced algorithms and efficient computational schemes. Current research areas include parallel algorithms, heterogeneous network computing, graph theory, image processing, computational fluid dynamics, singular problems, the adaptive grid method, rarefied flow simulations.

Applied Sciences

The applications of mathematics to interdisciplinary science areas include material science, multiscale modeling, multiphase flows, evolutionary genetics, environmental science, numerical weather prediction, ocean, and coastal modeling, astrophysics, and space science.

Probability and Statistics

Statistics, the science of collecting, analyzing, interpreting, and presenting data, is an essential tool in a wide variety of academic disciplines as well as for business, government, medicine, and industry. Our research is conducted in four categories. Time Series and Dependent Data: inference from nonstationarity, nonlinearity, long-memory behavior, and continuous-time models. Resampling Methodology: block bootstrap, bootstrap for censored data, and Edgeworth and saddlepoint approximations. Stochastic Processes and Stochastic Analysis: filtering, diffusion and Markov processes, and stochastic approximation and control. Survival Analysis: survival function and errors in variables for general linear models. Probability current research includes limit theory.

Financial Mathematics

This is one of the fastest-growing research fields in applied mathematics. International banking and financial firms around the globe are hiring science Ph.D.s who can use advanced analytical and numerical techniques to price financial derivatives and manage portfolio risks. The trend has been accelerating in recent years on numerous fronts, driven both by substantial theoretical advances as well as by a practical need in the industry to develop effective methods to price and hedge increasingly complex financial instruments. Current research areas include pricing models for exotic options, the development of pricing algorithms for complex financial derivatives, credit derivatives, risk management, stochastic analysis of interest rates, and related models.


Admission Requirements

i. General Admission Requirements

Applicants seeking admission to a doctoral degree program should have:

  • Obtained a bachelor’s degree with a proven record of outstanding performance from a recognized institution; or presented evidence of satisfactory work at the postgraduate level on a full-time basis for at least one year, or on a part-time basis for at least two years.

ii. English Language Admission Requirements

You have to fulfill English Language requirements with one of the following proficiency attainments*:

  • TOEFL-iBT: 80#
  • TOEFL-pBT: 550
  • TOEFL-Revised Paper-Delivered Test: 60 (total scores for Reading, Listening and Writing sections)
  • IELTS (Academic Module): Overall score: 6.5 and All sub-scores: 5.5

*If your first language is English, and your bachelor’s degree or equivalent qualification was awarded by an institution where the medium of instruction was English, you will be waived from fulfilling the above English Language requirements.

#refers to the total score in one single attempt

For more program information, please refer to

Last updated Oct 2020

About the School

Situated at the heart of Asia, the Hong Kong University of Science and Technology (HKUST) is a young and distinguished research university in Hong Kong. Ranked No. 27 in the World in the QS World Univ ... Read More

Situated at the heart of Asia, the Hong Kong University of Science and Technology (HKUST) is a young and distinguished research university in Hong Kong. Ranked No. 27 in the World in the QS World University Rankings (2020), HKUST offers a wide selection of research postgraduate studies in Science, Engineering, Business and Management, Humanities and Social Science, Environmental Studies, and Public Policy leading to the Master of Philosophy (MPhil) and the Doctor of Philosophy (Ph.D.) degrees. All programs are taught in English. Read less